

Emissions of anthropogenic air pollutants and CO₂ in China 2005-2010

Recent trends, uncertainties, and implications of improved energy efficiency and emission control

Yu ZHAO^{1,2,4}, Jie Zhang^{3,4}, Chris P NIELSEN², Michael B MCELROY², Jiming HAO⁴

- 1. School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
- 2. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- 3. Jiangsu Provincial Academy of Environmental Science, Nanjing, Jiangsu 210036, China
- 4. School of Environment, Tsinghua University, Beijing 100084, China

Pearl River Delta Session Mar 20 2013

- Background and methods
- Compiling the emission factor database
- Results: national emissions 2005-2010
- Discussions and implications

Fast increase in economy and energy consumption

Largest emissions estimated over the world

Source: Bond et al., Journal of Geophysical Research 2004

Highest pollution levels found over the world

Global $PM_{2.5}$ concentrations 2001-2006 derived from MODIS

Source: van Donkelaar et al., Environmental Health Perspectives 2010

The 11th Five Year (2006-2010) Plan (11th FYP)

Targets on resources and environment

- Energy consumption per unit of GDP
- Decrease of major pollutants (SO₂ and COD)

-20% (Compulsory)

-10% (Compulsory)

Plans on coal-fired power plants

- FGD application: all the new-built units and considerable existing ones
- Closing old, non-efficient small units, up to 50 GW Actually ~70GW
- New-built electricity generation units: should be larger than 300 MW

Actions on other emission sources

- Improved technology and energy efficiency for industrial sectors
- Staged emission and fuel quality standards for on-road vehicles

Changes in coal-fired power units 2000-2010

What we wanted to know:

- The effects of polices on national (and local) emission trends
- The uncertainty of emission estimates for China
- The consistence between emissions and observation

Source: Streets et al., Journal of Geophysical Research 2003

Framework of bottom-up emission inventory

Monte-Carlo simulation-conceptual approach

Uncertainties of every parameters will be determined and put in Monte-Carlo simulation.

- Background and methods
- Compiling the emission factor database
- Results: national emissions 2005-2010
- Discussions and implications

EF database for coal-fired power plants (CPP)

Sampling methods

PM₁₀ mass fraction before and after control

• Before ESP, PM_1 accounts for less than 10% of PM_{10} , coarse fraction ($PM_{2.5-10}$) accounts for more than 65%.

• After ESP, the share of fine particles largely increases. PM_1 accounts for about 14%-28% of PM_{10} , and the course fraction decreases to 40%-62%.

• After the Wet FGD, PM_1 accounts for more than 30% mass fraction of PM_{10} .

Results of field measurements

$LT_{PM,y} = A \times (1 - \alpha I) \times J_y \times (1 - \eta_y)$									
Boiler	Size	Dust) collector	1-ar	Size fraction			Efficiency (%)		
	(MWe)			$> \mathbf{PM}_{10}$	$\mathbf{PM}_{2.510}$	$\mathbf{PM}_{2.5}$	$>_{\mathbf{PM}_{10}}$	$\mathbf{PM}_{2.5-10}$	$\mathrm{PM}_{2.5}$
Grate	29	Wet	0.15	0.72	0.18	0.1	98.65	87.98	71.73
\mathbf{PC}	50	ESP	0.5	0.80	0.14	0.06	99.53	94.39	90.88
\mathbf{PC}	50	ESP	-	0.77	0.16	0.07	99.61	99.16	97.86
\mathbf{PC}	100	ESP	0.66	0.86	0.1	0.04	_	-	_
\mathbf{PC}	100	FF	0.58	0.90	0.07	0.03	_	_	_
\mathbf{PC}	125	ESP	0.75	0.90	0.08	0.02	99.37	98.7	94.62
PC	165	ESP	0.71	0.80	0.15	0.05	99.54	98.22	94.44
		Wet-FGD	0.71	0.80			92.82	73.03	52.7
\mathbf{PC}	200	ESP	0.84	0.85	0.11	0.04	99.79	98.81	96.24
\mathbf{PC}	200	ESP	0.89	0.83	0.12	0.05	99.11	95.71	92.65
PC	200	ESP	0.65	0.85	0.11	0.04	99.74	98.39	96.84
		Wet-FGD	0.03				90.46	78.22	46.34

 $- A \times (1 - ar) \times f \times (1 - r)$ $\boldsymbol{\Gamma}\boldsymbol{\Gamma}$

PM emission factor database for CPP (kg/t)

¹ In all cases, A is the ash content, in percent, of the coal as fired.

Emission factor change for stationary sources

Emission factor change for mobile sources

- Background and methods
- Compiling the emission factor database
- Results: national emissions 2005-2010
- Discussions and implications

	2005	2006	2007	2008	2009	2010
SO2	31085 (-14%, 13%)	32058	31376	29019	27715	27714 (-15%, 26%)
NOx	19645 (-13%, 37%)	21550	23621	24082	26016	28815 (-15%, 35%)
CO	172871 (-20%, 45%)	178678	179337	177194	183017	187900 (-18%, 42%)
TSP	33197(-11%, 38%)	32401	32457	30217	30367	28746 (-22%, 54%)
PM10	18906 (-14%,45%)	18837	18876	17680	17834	16990 (-15%, 54%)
PM25	12981 (-17%, 54%)	12921	12951	12293	12508	12212 (-15%, 63%)
BC	1690 (-25%, 136%)	1752	1733	1790	1848	1667 (-28%, 126%)
OC	3153 (-40%, 121%)	2907	2791	2782	2829	2848 (-42%, 114%)
Ca	5653	565 2	5706	4866	4873	4253 (-75%, 77%)
Mg	375	367	373	357	367	356 (-46%, 152%)
CO2	7126 (-9%,11%)	7733	8476	8706	9386	10176 (-10%, 9%)

Unit: Million metric tons (Mt) for CO₂ and kilo metric tons (kt) for other species

SO_2 and NO_X emission trends

PM emission trends

Less benefits have been achieved for finer particle emissions

Carbonaceous emission trends

CO and CO₂ emission trends

Reduced uncertainty through Monte-Carlo simulation

- Background and methods
- Compiling the emission factor database
- Results: national emissions 2005-2010
- Discussions and implications

Comparison with ground observations-SO₂

Comparison with ground observations-PM₁₀

Comparison with ground observations-NO_x

Comparison with satellite observations-NO_X

Comparison with satellite observations-SO₂

Comparisons for CO₂/CO ratios with observation

Obs site: Miyun, rural Beijing Wang et al., *ACP*, 2010

Obs site: PKU, urban Beijing Han et al., *JGR*, 2009

Revised figures from Wang et al., ACP, 2010

Pollution extends from developed to broader regions

GOME 1996-1998 summer SCIAMACHY 2003-2005 summer 45.0°N 45.0°N 40.0°N 40.0°N 35.0°N 35.0°N 30.0°N 30.0°N Urumai Urumqi 25.0°N 25.0°N 100.0°E 130.0°E 110 0°F 120.0°E 100.0°E 110.0°E 120.0°E 130.0°E SCIAMACHY 2008-2010 summer 2008-2010 summer/2003-2005 summer 45.0°N 45.0°N 40.0°N 40.0°N 35.0°N 35.0°N 30.0°N 30.0°N Urumqi Urumai 25.0°N 25.0°N 120.0°E 100.0°E 110.0°E 120.0°E 130.0°E 100.0°E 110.0°E 130.0°E 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 E+15 molec/cm2 0.0 0.3 0.6 0.9 1.2 1.5 1.8

Zhang et al., Chin. Sci. Bull., 2012

	The fractions of developed provinces to total country	
	2005	2010
Activity levels		
Capacity of coal-fired power plants	28 %	24%
Cement production	28 %	22%
Steel production	30 %	28%
Coal consumption	18%	17%
On-road vehicle population	36 %	34%
Emissions		
SO ₂	22 %	17%
NOx	28 %	24%
CO	21 %	18%
PM	19 %	16%
CO ₂	23 %	21%

The fractions of emissions from developed provinces reduced from 2005 to 2010

Potential risks for heavier acidification in future?

Conclusions

- China's current program of emission controls gradually reduces SO₂ and PM but fails to restrain NO_X. Less benefits are achieved for finer particles.
- Air pollution is spreading from mega cities to undeveloped areas, due to relatively strict control in developed urban regions.
- While observations reflect inter-annual trends of emissions, discrepancies exist for given regions and seasons, indicating the needs of research with higher time/spatial resolution.
- Faster decrease in PM emissions than that in SO₂ indicates potential risks for ecosystem acidification, reflecting the necessity of comprehensive multi-pollutant control.

Comments and Questions?

For More Information

Zhao et al., *Atmos Chem Phys*, 13, 487-508, 2013 Zhao et al., *Atmos Environ*, 59, 214-223, 2012 Zhao et al., *Atmos Environ*, 49, 103-213, 2012 Zhao et al., *Atmos Environ*, 44, 1515-1523, 2010

http://chinaproject.harvard.edu

Contact: yuzhao@nju.edu.cn

Satellite observation of CO (carbon monoxide) column

- Satellite observation indicates East China as hotspot of CO column
- The trend in East China total column CO has decreased since 2000

Revised figures from Worden et al., *Atmos Chem Phys Discuss*, 12, 25703, 2012

Coal-fired power units for 2005 and 2010

Size distribution of PM₁₀

NO_X emission factor database for CPP (kg/t)

Boiler	Capacity	Coal	Control	Burner	Emission factor	
		Bituminous and lignite	No	All types	6.1 (5.3-7.1)	
	<300MW	Anthracite	No	All types	9.0 (8.1-9.9)	
		Bituminous and lignite	LNB	All types	4.0 (3.5-4.6)	
DC and		Anthracite	LNB	All types	5.5 (4.3-6.8)	
PC and						
grate		Bituminous and lignite	LNB	Tangential	4.7 (4.1-5.4)	
poller		Bituminous and lignite	LNB	Wall-fired	5.2 (4.4-6.1)	
	≥300 MW	Anthracite	LNB	Tangential	7.6 (7.1-8.1)	
		Anthracite	LNB	Wall-fired	8.6 (7.4-9.9)	
		Anthracite	LNB	W-flame	11.2 (9.9-12.5)	
CFBC	All	All types	No	CFBC	1.5	

